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The preferred source of Mercury’s magnetic field
(Ness, et al., 1974) is a dynamo (Ness, et al., 1975),
which in turn implies that Mercury has a currently molten
core. However, whether or not a given model with dif-
ferentiation has a core with at least a conducting, molten
outer layer that persists to the present depends critically
on assumptions about the time of core formation, the
time varying distribution of radioactive elements within
the planet, core composition, thermal conductivities and
the efficiency of convective heat transport. (Siegfried and
Solomon, 1974; Fricker et al., 1976; Cassen et al.,1976;
Schubert et al. 1988), The reservations about the per-
sistence of a molten core and the profound implications
for thermal histories of terrestrial planets, the theory of
planetary dynamos, and rotational history of Mercury
makes the existence and size of the suspected fluid core
probably the most important information that could be
obtained about the planet Mercury. We review past as-
sertions below that the determinations of the four param-
eters,C20; C22; �; �, are sufficient to determine the size
and state of Mercury’s core (Peale, 1976, 1981, 1988).
C20 and C22 are gravitational harmonics, � is Mercury’s
obliquity and � is the amplitude of the forced, 88 day
period libration in longitude. The existence of gravity
assisted spacecraft trajectories to Mercury with modest
propulsion systems (e.g., Yen, 1989), and the possibility
of determining these parameters with instrumentation on
a Mercury-orbiting spacecraft (Wu, et al, 1996; Zuber
and Smith, 1997) makes a re-examination of this pro-
posal particularly relevant.

There are two necessary conditions on the core–
mantle interaction for the experiment to work: 1. The
core must not follow the 88 day physical librations of the
mantle. 2. The core must follow the mantle on the time
scale of the 250,000 year precession of the spin in Cassini
state 1 (See Peale, 1969 for discussion of Cassini states).
We shall assume these two conditions are satisfied to de-
velop the method and later establish the constraints on
the core viscosity for which they are satisfied.

The physical libration of the mantle about the mean
resonant angular velocity arises from the periodically re-
versing torque on the permanent deformation as Mercury
rotates relative to the Sun. The amplitude of this libration

is given by (Peale, 1972),
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where the moment of inertia in the denominator is that
of the mantle alone since the core does not follow the
librations. The core is assumed axially symmetric so it
does not contribute toB�A. Dissipative processes will
carry Mercury to rotational Cassini state 1 (where spin,
orbit precessional and orbital angular velocities remain
coplanar) with an obliquity � close to 0� (Peale, 1988).
This leads to a constraint,

K1(�)

�
C �A

C

�
+K2(�)

�
B �A

C

�
= K3(�) (2)

where the moment of inertia in the denominator is now
that of the total planet since the core is assumed to follow
the precession. Note that the precession here is not the
relatively rapid precession of the spin about the Cassini
state in the frame rotating with the orbit, which the core
is not likely to follow, but it is the precession of the orbit
(with the much longer period) in which frame the spin is
locked if Mercury occupies the exact Cassini state.

The lowest order gravitational harmonics are ex-
pressed in terms of the moment differences as follows.
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where the numerical values are estimated for Mercury
from Mariner 10 flyby data (Anderson, et al, 1986). Eqs.
(3) can be solved for (C�A)=Mpa

2
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in terms of C20 and C22, determined by tracking the
orbiting spacecraft. Substitution of the solutions of Eqs.
(3) into Eq. (2) yields a numerical value for C=Mpa

2
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since theKi are known once the obliquity � is measured.

Measurement of the amplitude � of the physical li-
bration determines (B � A)=Cm (Eq. (1)) from which
three known factors give�
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A value of Cm=C of 1 would indicate a core firmly
coupled to the mantle and most likely solid. If the entire
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core or the outer part is fluid, Cm=C ' 0:5 for the large
core size (rc ' 0:75RÉ) in current models of the interior
(Cassen et al., 1976).

Are the necessary condition on the core–mantle inter-
action likely to be satisfied? Two time constants for the
decay of a differential rotation of a spherical cavity and
its contained fluid are used to relate the coupling constant
between the core and mantle to the kinematic viscosity
(Peale, 1988).
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where the first applies to small viscosities and the latter
to large viscosities with  ̇ being Mercury’s spin rate.
If � � 88 days, the core will not follow the mantle,
and if � � 250; 000 years, the core will follow the
precession of the mantle angular momentum. These
conditions correspond to

4� 10�4 < � < 5� 108 to 4� 109 cm2=sec: (6)

As this range includes all possible values for the viscosity
of likely core material (e.g. Gans, 1972), the experiment
should work if the core–mantle coupling is primarily of
a viscous nature.

Measured ranges of values of C20; C22 are given in
Eqs. (3), and values of the obliquity and of the libration
amplitude corresponding to the extremes values of these
harmonics are

1:7 <� m � <� m 2:6 arcmin 20 <� m � <� m 60 arcsec;
(7)

where � follows from the solution of Eq. (2) and � from
Eq. (1) with � = :854(B � A)=Cm for e = 0:206 and
Cm=C = 0:5 and C=Mpa

2
e = 0:35 being assumed.

To estimate the required precision of the measure-
ments for meaningful interpretation, we designate the
four parameters whose nominal values are given in Eqs.
(3) and (7)) by �i and write
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which gives a maximum uncertainty of
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where the superscript 0 indicates the nominal values of
the parameters, fi = �0:83; 0:83;�1;�1 respectively
for the terms in Eq. (9) with �i = C20; C22; �; �,
and where the numerical value corresponds to frac-
tional uncertainties of 0.01, 0.01, 0.1, 0.1 respectively
for the four parameters with nominal values C0

20 =

�6 � 10�5; C0
22 = 1 � 10�5; �0 = 3 arcmin, and

�0 = 30 arcsec being assumed. If instead of the
second of Eqs. (3), we assume C22 = �C20=8 and
C=Mpa

2
e = 0:35, then 5:2 >

� �0 >
� 1:0 arcmin for

2 � 10�5 <
� m �C20 <

�m 1 � 10�4 with the cor-
responding range of �0 being shifted only slightly to
smaller values. But because the angles are all small, the
fi are not significantly affected in the uncertainty esti-
mate providedC22=C20 remains approximately constant.

The maximum error would yieldCm=C = 0:5�0:11
which would distinguish the molten core. Since the nu-
merical coefficients in Eq. (9) are not very sensitive to
the nominal values of the parameters, the error estimates
remain the same for other reasonable values of the pa-
rameters if the fractional uncertainty of each parameter
is unchanged. If, on the other hand, we fix each param-
eter uncertainty to be that value derived from the above
assumed fraction of the central value but let the nominal
values go to the extremes in Eq. (9),Cm=C = 0:5�0:24
for all minimal nominal values,andCm=C = 0:5�0:065
for all maximal nominal values. Even the worst case
would distinguish a molten core, although the core size
would not be well constrained.

Measurement of C20 and C22 to two significant fig-
ures and ∆� and ∆� to a few arcseconds will assure that
meaningful bounds on Cm=C are obtained.
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